75 research outputs found

    Magnetic inclination e ects in star-planet magnetic interactions

    Get PDF
    A large fraction of the exoplanets discovered today are in a close-in orbit around their host star. This proximity allows them to be magnetically connected to their host, which lead to e cient energy and angular momentum exchanges between the star and the planet. We carry out three-dimensional magneto-hydrodynamic simulations of close-in star-planet systems to characterize the e ect of the inclination of the planetary magnetic eld on the star-planet magnetic interaction. We parametrize this e ect in scaling laws depending on the star, planet, and stellar wind properties that can be applied to any exoplanetary systems around cool stars

    Interactions of exoplanets with their environment

    Get PDF

    The effect of magnetic topology on thermally-driven winds: towards a general formulation of the braking law

    Get PDF
    Stellar winds are thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. 60 simulations made with a 2.5D, cylindrical and axisymmetric set-up and computed with the PLUTO code were used to find torque formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phase as observed at the Wilcox Solar Observatory, and of a young K-star (TYC-0486- 4943-1) whose topology has been obtained by Zeeman-Doppler Imaging (ZDI).Comment: 17 pages, 13 figures, accepted for publication in ApJ (10/29/2014

    On close-in magnetized star-planet interactions

    Get PDF
    Proceedings: Semaine de l’Astrophysique Française, Nice (5 juin au 8 juin 2012)We present 2D magnetohydrodynamic simulations performed with the PLUTO code to model magnetized star-planet interactions. We study two simple scenarios of magnetized star-planet interactions: the unipolar and dipolar interactions. Despite the simplified hypotheses we consider in the model, the qualitative behavior of the interactions is very well recovered. These encouraging results promote further developments of the model to obtain predictions on the effect and the physical manifestation of magnetized star--close-in planet interactions

    Tearing instability and periodic density perturbations in the slow solar wind

    Full text link
    In contrast with the fast solar wind, that originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low FIP elements -- akin to what is observed in closed coronal loops -- the slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations which have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the WISPR white light imager onboard Parker Solar Probe (PSP). In this work, we propose that the main mechanism controlling the release of flux ropes is a flow-modified tearing mode at the heliospheric current sheet (HCS). We use MHD simulations of the solar wind and corona to reproduce realistic configurations and outflows surrounding the HCS. We find that this process is able to explain long (∼10−20\sim 10-20h) and short (∼1−2\sim 1-2h) timescales of density structures observed in the slow solar wind. This study also sheds new light on the structure, topology and composition of the slow solar wind, and could be, in the near future, compared with white light and in situ PSP observations.Comment: 8 pages, 5 figures, accepted for publication in ApJ
    • …
    corecore